

Comisión Nacional de Energía Atómica

Diseño numérico de facilidad PGNAA

Matías J. Valero

Coordinación BNCT, GAATeN, Centro Atómico Ezeiza Comisión Nacional de Energía Atómica Departamento de Física y Química. Facultad de Inaenie

Departamento de Física y Química. Facultad de Ingeniería y Ciencias Exactas y Naturales. Universidad Favaloro

mvalero@cae.cnea.gov.ar

Workshop CUIA

Jueves 20 de Abril de 2017

Análisis de Gamma Instántaneo por Activación Neutrónica (Prompt-Gamma Neutron Activation Analysis, PGNAA)

Medir concentraciones de boro en muestras biológicas es esencial para BNCT debido a que está relacionado a la dosis terapéutica. Esta técnica permite realizar mediciones en tiempo real.

Workshop CUIA

Importancia de medición de concentración de boro

Dosis mixta en BNCT

Los tejidos están compuestos en general mayormente por H, C, N y O.

Dosis terapéutica

Dosis boro

 $^{10}B + {}^{1}n \rightarrow {}^{11}B \rightarrow {}^{7}Li + {}^{4}He + 2.31 \text{ MeV} + \gamma (478 \text{ keV})$ (94%)

Dosis por neutrones térmicos

$${}^{4}N + {}^{1}n \rightarrow {}^{14}C + {}^{1}H (E_{p} = 580 \text{ keV})$$

Dosis por neutrones rápidos

 ${}^{1}H + n \rightarrow {}^{1}H + n' (E_{p} \approx del mismo orden)$

Dosis por y absorbidos

 $^{1}\text{H} + ^{1}\text{n} \rightarrow ^{2}\text{H} + \gamma (2.2 \text{ MeV})$

Inevitable, no específica, mezcla de componentes de bajo y alto LET

Curva de biodistribución

Muestras y requisitos de la técnica

Definen

Características de muestras a medir

Tipo de muestras

Biopsias de pulmón, hígado, piel, tejido tumoral y/o sano y sangre.

Tamaño

< 0.05 g / ~ 10 µl

Concentración de ¹⁰B

~ 10 partes por millón

Requisitos de diseño de la facilidad PGNAA

Requerimientos del haz de neutrones en la posición de la muestra

Alto flujo neutrónico térmico (ϕ_T) (mínimo deseable es de $\phi_T = 6.0 \cdot 10^7$ n/(cm² · s))

Bajascomponentesdelflujoneutrónicodemayoresenergías(Relación $\phi_{\rm E}$ / $\phi_{\rm T}$ < 1 %</td>Relación $\phi_{\rm R}$ / $\phi_{\rm T}$ < 1 %)</td>

 $\phi_{\rm E}$: flujo neutrónico epitérmico $\phi_{\rm R}$: flujo neutrónico rápido

Diseño guiado por simulación

Se está desarrollando y construyendo una facilidad PGNAA en el Canal 4 del reactor RA-3 por la Comisión Nacional de Energía Atómica (CNEA).

Se realizaron diferentes etapas de **simulaciones numéricas** con el código de **transporte de partículas** MCNP 6 1.0, para asistir a los procesos de diseño y caracterización.

Visualización del software Moritz 1.20^[1].

Provisto por Sebastián Langan, comunicación privada.

Sztejnberg M.L, Gadan M. A., Bortolussi S., Pinto J., Ojeda J., Langan S., ... y Miller M. E. Development of prompt gamma neutron activation analysis facility for 10B measurements at RA-3: Design stage. Appl.
 Workshop CUIA

Fuente de neutrones

Reactor nuclear de fisión RA-3 Centro Atómico Ezeiza

Tarea del sistema de adecuación del haz

Formas de adecuación del haz

- Conocimiento de interacción de la radiación con la materia.
- Propiedades de la materia: absorción, moderación, blindaje, etc.

Colimación de partículas

Proceso de diseño iterativo

MCNP A General <u>M</u>onte <u>C</u>arlo <u>N-P</u>article Transport Code

Método basado en simulaciones estocásticas.

Transcripción directa en términos computacionales de un proceso inherentemente probabilístico.

Workshop CUIA

Registro de eventos

- 1. Dispersión de neutrón, producción de fotón.
- 2. Fisión, producción de fotón.
- 3. Captura neutrónica.
- 4. Neutrón escapa.
- 5. Dispersión de fotón.
- 6. Fotón escapa.
- 7. Captura del fotón.

^[2] Pelowitz D. B. MCNP6[™] User's Manual, Version 1.0, LA-CP-11-00634 Rev. 0. Los Alamos National Laboratory, New Mexico, USA, ed. 2013.

Adecuación del haz

 Modelos numéricos preliminaries, fuentes simplificadas considerando un haz angosto.

- Caracterización inicial del flujo neutrónico (simulaciones y mediciones).
 Técnicas de reducción de varianza.
- Evaluación de materiales posibles para colimadores.

Criticidad y fuentes traza por traza

- Generación fuentes traza-por-traza (TpT).
- Flujo neutrónico del modelo numérico del RA-3 previamente validado para la Columna térmica ^[3].
- Ahorro de tiempo computacional.

Workshop CUIA

^[3] Bortolussi, S., Pinto, J.M., Thorp, S.I., Farias, R.O., Soto, M.S., Sztejnberg, M., Pozzi, and Miller, M., 2010. Simulation of the neutron flux in the irradiation facility at RA-3 reactor. In Proceedings of the 14th International Congress on Neutron Capture Therapy, Buenos Aires, pp. 383 – 386, October 2010.

Canal 4

Extensión de aire

uperficie SSW

para fuente

Diseños de haz angosto

Modelo I

Colimación utilizando la fuente TpT1

^[2] Rogulich, L., Valero, M., Sztejnberg, M, Thorp, S.I., Estryk, G., Riella, y Quintana, J., 2014. Caracterización preliminar del canal 4 en el reactor RA-3 para usar en un sistema Prompt Gamma. XLI Reunión Anual de la Asociación Argentina de Tecnología Nuclear, Ciudad Autónoma de Buenos Aires.

Diseños de haz de ancho intermedio – 1º Etapa

- Redistribución de filtros y colimadores
- Ensanchamiento del diámetro interno del sistema de colimación hasta 2.0 cm.
- Inclusión de un colimador de grafito de 1.4 m de largo con anillos de plomo.
- Inclusión de un filtro de zafiro de 30 cm.

Modelos de referencia

Para análisis del impacto de los distintos componentes y para usar como base para mejoras en el diseño.

- * Modelo D: Sin colimador largo de grafito
- Modelo E: Sin colimadores
- Modelo F: Sin colimadores ni filtros
- Modelo G: Sin filtro de zafiro

Diseños de haz de ancho intermedio – 1º Etapa

- Redistribución de filtros y colimadores
- Ensanchamiento del diámetro interno del sistema de colimación hasta 2.0 cm.
- Inclusión de un colimador de grafito de 1.4 m de largo con anillos de plomo.
- Inclusión de un filtro de zafiro de 30 cm.

Modelos de diseño

Diseños de haz de ancho intermedio – 1º Etapa

Flujo neutrónico en la posición de la muestra

(*) Resultados de simulación ajustados con la medición en la posición R.

1.18.8.7

El **modelo B** fue seleccionado para pruebas de medición.

• La simulación resultó de un $\phi_T \sim 2.5 \cdot 10^7$ n/(cm² · s) y relaciones $\phi_E/\phi_T = 0.02\%$ y $\phi_R/\phi_T = 0.05\%$.

Diseños de haz de ancho intermedio – 2º Etapa

En el modelo H, se propuso un **aumento del diámetro interno del sistema de colimación** hasta 3.0 cm (antes era de 2.0 cm).

Flujo neutrónico en la posición de la muestra

Perfil radial del flujo neutrónico térmico en la posición de la muestra y beam catcher

► El valor medido fue de ϕ_T = 2.7 ·10⁷ n/(cm² · s) con un error del 5%.

Diferentes factores pueden ser los que producen las discrepancias entre las mediciones y las simulaciones.

Progreso del diseño y evaluación Diseños de haz de ancho intermedio – 3º Etapa Se han alcanzado flujos más altos de aproximadamente $\phi_{\tau} \sim 9.9 \cdot 10^7 \text{ n/(cm}^2 \cdot$ s), pero se debe estudiar en detalle el fondo neutrónico y gamma cerca de la posición de irradiación e ir convergiendo hacia la radioprotección. 🗖 Aluminio Aire Delrin Concreto Plomo Li₂CO₃ Blindaje de la región de detección Modelo I Modelo H Modelo I ---Límite interno del canal 1.00E+08 Perfil radial del $oldsymbol{\phi}_T$ en posición de 1.00E+07 muestras (n/cm²·s) 1.00E+06 Disminución de ϕ_{T} 1.00E+05 Fluencia de neutrones (1/cm²) 10-17 10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9 1.00E+04 1.00E+03 1.00E+02 0 5 10 15 20 25 30 35 40 45 50 55 60 y (cm)

20 cm

Conclusiones

- Se desarrollaron modelos de MCNP para poder asistir en el diseño y desarrollo de una facilidad PGNAA en el RA-3, para medir concentraciones de ¹⁰B en muestras biológicas, dentro del marco de trabajo del Proyecto de BNCT de CNEA.
 - Los mejores modelos alcanzaron un flujo neutrónico térmico muy cercano al valor mínimo deseado de 6.0.107 n/(cm² s). En el modelo H presentado, el tiempo de irradiación de muestras necesitaría alrededor de 6.5 minutos.
- Las componentes epitérmicas y rápidas han sido reducidas significativamente en alrededor de 0.01% del ϕ_T , lo cual supera ampliamente la condición del mínimo deseado del 1%.
- Los resultados obtenidos permiten sugerir modificaciones en el diseño y estrategias de medición de flujos.
- Todos los esfuerzos en evaluación, diseño y construcción llevaron desde un estado inicial del canal en el cual no estaba en uso, y no había sido caracterizado previamente, a un estado actual en el que hay una facilidad PGNAA casi funcional que ahora está medida, caracterizada y modelada.

Trabajo a futuro

La futura retroalimentación de nuevos modelos y mediciones de una facilidad modificada permitirán obtener mejores características del haz y valores de simulación y medición más cercanos entre sí.

Incluir el acoplamiento fotón-neutrón en las simulaciones para análisis del sistema de detección gamma, la estructura sostén de la muestra y radioprotección.

Validar los modelos.

Realizar una calibración y protocolos de medición.

Muchas gracias por la atención!!

mvalero@cae.cnea.gov.ar