Boróscopo: ¿cuánto boro tendré hoy?

Lic. María Silvina Olivera

Química

Dpto. Coordinación BNCT - Comisión Nacional de Energía Atómica
Escuela de Ciencia y Teonología – Universidad Nacional de San Martín

olivera@cnea.gov.ar

Boróscopo: del griego

βοριο boro σκοπειν (skopein) examinar u observar

"observación del boro"

¿podemos predecir el futuro del Boro?

Al igual que en el horóscopo...

teniendo en cuenta la hora y comienzo "de infusión" de la solución borada

Pero depende de muchos otros factores:

- •Naturaleza del compuesto borado
- Dosis administrada
- •Forma de administración
- •Dirigido sintéticamente o no
- •A qué tipo de célula tumoral se dirige

la posición de los astros a veces también influye

¿Por qué queremos saber cuánto B hay?

 $^{10}\mathrm{B}(\mathrm{n},\alpha)^{7}\mathrm{Li}$

$D_{T} = D_{n} + D_{\gamma} + D_{B} + D_{N}$ $ppm^{10}B$

Planificación de experimentos con animales

ICP-OES measurements

ICP-OES (inductively coupled plasma optical emission spectroscopy)

Cuantificamos el B globalmente, como un total en la muestra en cuestión.

HPLC (high performance liquid chromatography)

Cuantificamos el B por compuesto, más complicado hacerlo en muestras biológicas.

Cromatograma a una dada λ

Biodistribuciones en animales

Síntesis de liposomas 🚺 🔀

Captación en células

Muestras y patrones para autorradiografía

2124

tiliz

Métodos de digestión de muestras:

Tejidos blandos - tumores \longrightarrow Tritón – sulfonítrica – \emptyset -

Tejidos blandos – huesotumores - células

EDTA - Tritón sangre

Mediciones de B en sangre durante el tratamiento de pacientes

Comparar diferentes protocolos, diferentes compuestos, toxicidad.

Tejido	Protocolo 1	Protocolo 2	Protocolo 3
Tumor	32,60 ± 1,40	16,99 ± 1,9 *	24,00 ± 1,3
Sangre	$4,70 \pm 0,60$	2,73 ± 1,06	4,80 ± 1,44
PC	11,36 ± 0,47	6,83 ± 3,61	11,57 ± 1,26
PD	13,24 ± 1,54	2,95 ± 0,67	12,82 ± 0,56
Hígado	$7,03 \pm 0,53$	4,43 ± 1,35	7,96 ± 1,75
Riñón	15,58 ± 1,65	5,9 ± 0,92	23,98 ± 7,01
Pulmón	7,57 ± 0,71	$3,57 \pm 0,66$	8,69 ± 1,70

Estudios de captación de BPA. Los estudios de biodistribución de BPA mostraron una un aumento de la captación tumoral de boro en los animales del protocolo 1 (NaB 50mM 24 h antes del BPA) y una disminución en aquellos del protocolo 2 (NaB 3.4% en el agua de bebida) respecto de aquellos del protocolo 3 (BPA solo) Las relaciones tumor/sangre y tumor/piel normal circundante fueron de 6,93 y 2,85 para el protocolo 1, 6,22 y 2,49 para el protocolo 2 y 4,25 y 2,12 para el protocolo 3.

Comparative biodistribution of BA and BPA

El boróscopo, a diferencia del horóscopo, es una creencia *sí avalada* por la ciencia, pues resiste el método experimental.

Ionización de la muestra en el plasma

Parte más caliente del plasma ~ 8000K

Tiempo de Residencia es de pocos milisegundos

El aerosol se seca

Las partículas se descomponen y se disocian

Los átomos se forman y entonces se ionizan

Tissue	0.5 hours		1 hour		2 hours		3 hours	
	BPA	BPA + NaB	BPA	BPA + NaB	BPA	BPA + NaB	BPA	BPA + NaB
Tumor	18.9 ± 0.7	18.7 ± 0.9	22.7 ± 0.8	27.45 ± 1.03 ***	22.5 ± 0.9	32.6 ± 1.4 ***	18.5 ± 1.4	24.3 ± 0.9 **
Blood	10.5 ± 0.2	7.9 ± 0.9	6.2 ± 0.4	7.9 ± 0.5	5.3 ± 0.3	4.7 ± 0.6	3.16 ± 0.4	3.6 ± 0.4
Surrounding skin	11.7 ± 2.4	12.5 ± 1.25	12.8 ± 1.6	12.9 ± 0.7	10.6 ± 1.4	11.4 ± 0.5	10.1 ± 1.3	8.6± 0.6
Distal skin	11.3 ± 1.1	12.9 ± 0.3	13.4 ± 1.5	16.9 ± 1.4	9.4 ± 0.8	13.2 ± 1.5	7.1 ± 0.9	9.2 ± 1.3
Liver	11.6 ± 0.5	12.3 ± 1.3	9.7 ± 0.3	9 ± 0.2	6.1 ± 0.5	7.03 ± 0.5	5.9 ± 0.7	5.8 ± 0.4
Spleen	18.9 ± 2	19.8 ± 1.9	13.6 ± 0.5	12.8 ± 0.4	8.05 ± 0.4	8.5 ± 1.31	8.2 ± 1.1	7.85 ± 0.4
Kidney	41.3 ± 2.2	40.3 ± 3.02	31 ± 1.7	27.7 ± 0.7	14.9 ± 0.9	15.6 ± 1.6	13.1 ± 0.8	13.7 ± 1.1
Lung	14 ± 2.4	17.5 ± 3.5	10.4 ± 0.4	9.9 ± 0.3	7.7 ± 0.9	7.6 ± 0.7	6.7 ± 0.7	7.1 ± 0.7

Boron concentration in the different tissues of NIH nude mice bearing DTC. The measurements were performed at different times after BPA injection at a dose of 350 mg/Kg b.w. The NaB was administered 24 h before boron compound at dose of 50 mM. The values are the average \pm SEM of between 5 and 8 samples of two different experiments. ** p<0.01 and *** p<0.001.