

ESCUELA DE CIENCIA Y TECNOLOG

Gerencia Investigación y Aplicaciones Tecnología y Aplicaciones de Acelerado

DOSIMETRÍA EN TIEMPO REAL BASADA EN IMÁGENES

ALEJANDRO VALDA, DANIEL MINSKY, ANDRÉS J. KREINER

1

avalda@unsam.edu.ar

Áreas de trabajo:

- BNCT con aceleradores
- Imagenología
- Detección de radiación

Trabajos sobre el tema presentados al 17th International Congress on Neutron Capture Therapy 2 al 7 de octubre de 2016, Missouri, USA

- Characterization of a CdZnTe detector prototype for Boron imaging by SPECT: simulations and measurements in a neutron field; S Fatemi, L Bianchini, S Bortolussi, I Postuma, N Protti, A De Bari, G Benassi, N Zambelli, M Bettelli, A Zappettini, S Altieri; Italia
- * Towards B neutron capture reaction mapping in a patient with photon-counting SPECT systems; A Winkler, H Koivunoro, I Auterinen, S Savolainen; Finlandia
- Development of a real-time prompt gamma-ray imaging system using GAGG:Ce or Srl2:Eu scintillator array for BNCT; H Tanaka, Y Sakurai, T Takata, T Watanabe, M Suzuki, K Akabori, S Kawabata, S Masunaga, N Kondo, K Ono, A Maruhashi, Japón
- * Design and Feasibility of a Gamma-Ray Detection System for Three Dimensional Patient Dose Imaging; K Akabori, K Taki, Y Aoki, T Mitsumoto, S Yajima, H Tanaka; Japón
- 3D SPECT reconstructed image from prompt gamma ray in BNCT for a heterogeneous human phantom: A Monte Carlo simulation study; C Gong, X Tang, C Geng, H Yu, W Shao, D Shu, D Chen; China
- Gadolinium effect estimation of GAGG for BNCT-SPECT; N Saraue, M Manabe, R Ohya, F Sato, I Murata; Japón

7

DISEÑO DEL SISTEMA Y CONSTRUCCIÓN DE UN PROTOTIPO

Diseño del sistema: características generales

- Resolución espacial del colimador: 1 cm
- Adquisición:
 - muestreo angular:
 - 9° (20 posiciones entre 0° y 180°)
 - muestreo lineal: 37
- Imagen:
 - tamaño de la imagen: 21×21 pixeles
 - tamaño del píxel:
 1 cm × 1 cm
- Cálculo: simulaciones numéricas Monte Carlo (código MCNP)

9

Trabajo experimental

Año 2008

Prototipo ensayado en el acelerador para estudios de BNCT de la Universidad de Birmingham (Reino Unido)

Prototipo construido con detectores de centelleo de última generación de LaBr₃(Ce)

(Ensayos previos (2007) en RA6, Argentina, con CdZnTe)

11

DESARROLLOS EN CURSO Y CONCLUSIONES

17

Nuevos detectores

- Cambio de geometría de los cristales centelladores:
 - Incremento del espesor para incrementar la eficiencia intrínseca de detección.
 - Disminución del tamaño lateral para mejorar la relación señal/ruido y disminuir el volumen de blindaje.
- Remplazo de tubos fotomultiplicadores por opto semiconductores compactos.

