


Cálculo y medición del flujo neutrónico (φ)

medición in situ de [¹⁰B] (por ej con ICP)

muestras de sangre

[¹⁰B] en el tumor y en tejido sano inferida a partir de datos estadísticos de biodistribución



3

# Plan de la charla

- \* Presentación del principio
- \* Diseño del sistema y construcción de un prototipo
- Resultados experimentales
- Desarrollos en curso y conclusiones



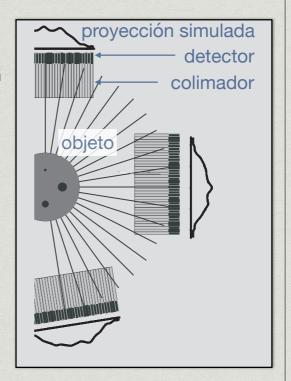


presencia de fondo neutrónico y de radiación gamma



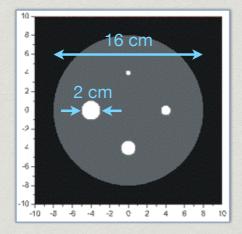
desarrollo específico del sistema de detección

#### Trabajos sobre el tema presentados al 17th International Congress on Neutron Capture Therapy 2 al 7 de octubre de 2016, Missouri, USA

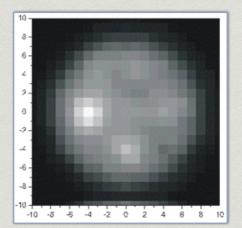

- \* Characterization of a CdZnTe detector prototype for Boron imaging by SPECT: simulations and measurements in a neutron field; S Fatemi, L Bianchini, S Bortolussi, I Postuma, N Protti, A De Bari, G Benassi, N Zambelli, M Bettelli, A Zappettini, S Altieri; Italia
- \* Towards B neutron capture reaction mapping in a patient with photon-counting SPECT systems; A Winkler, H Koivunoro, I Auterinen, S Savolainen; Finlandia
- \* Development of a real-time prompt gamma-ray imaging system using GAGG:Ce or Srl2:Eu scintillator array for BNCT; H Tanaka, Y Sakurai, T Takata, T Watanabe, M Suzuki, K Akabori, S Kawabata, S Masunaga, N Kondo, K Ono, A Maruhashi, Japón
- \* Design and Feasibility of a Gamma-Ray Detection System for Three Dimensional Patient Dose Imaging; K Akabori, K Taki, Y Aoki, T Mitsumoto, S Yajima, H Tanaka; Japón
- \* 3D SPECT reconstructed image from prompt gamma ray in BNCT for a heterogeneous human phantom: A Monte Carlo simulation study; C Gong, X Tang, C Geng, H Yu, W Shao, D Shu, D Chen; China
- \* Gadolinium effect estimation of GAGG for BNCT-SPECT; N Saraue, M Manabe, R Ohya, F Sato, I Murata; Japón

7

# DISEÑO DEL SISTEMA Y CONSTRUCCIÓN DE UN PROTOTIPO


### Diseño del sistema: características generales

- · Resolución espacial del colimador: 1 cm
- · Adquisición:
  - muestreo angular: 9° (20 posiciones entre 0° y 180°)
  - muestreo lineal: 37
- Imagen:
  - tamaño de la imagen:
     21×21 pixeles
  - tamaño del píxel:1 cm × 1 cm
- Cálculo: simulaciones numéricas Monte Carlo (código MCNP)




9

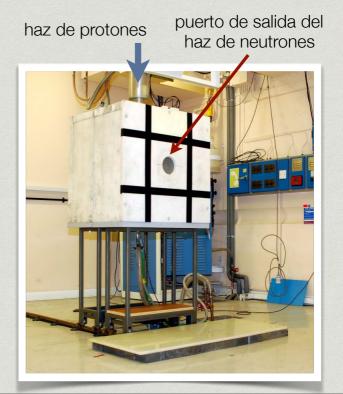
# Resultados esperados



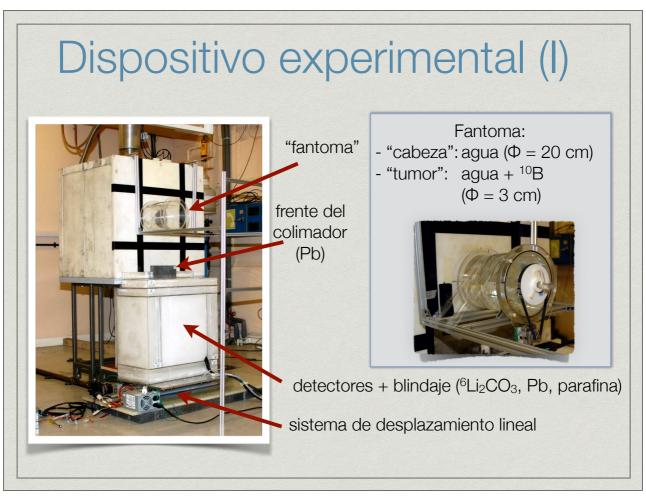
Objeto original (incógnita)



Reconstrucción: adquisición con 10 % de fluctuaciones estadísticas

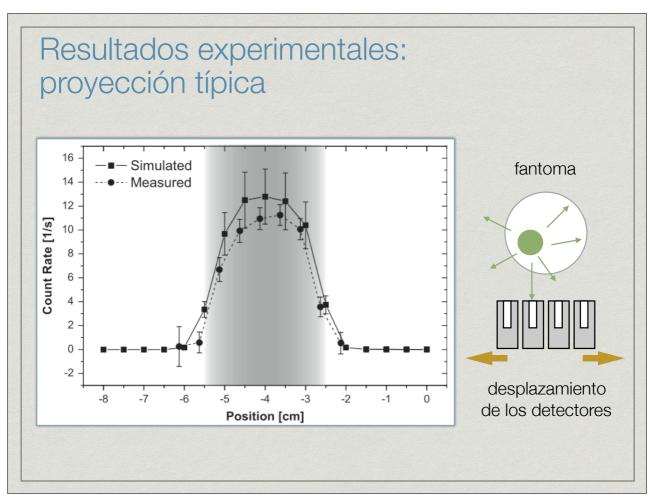

# Trabajo experimental

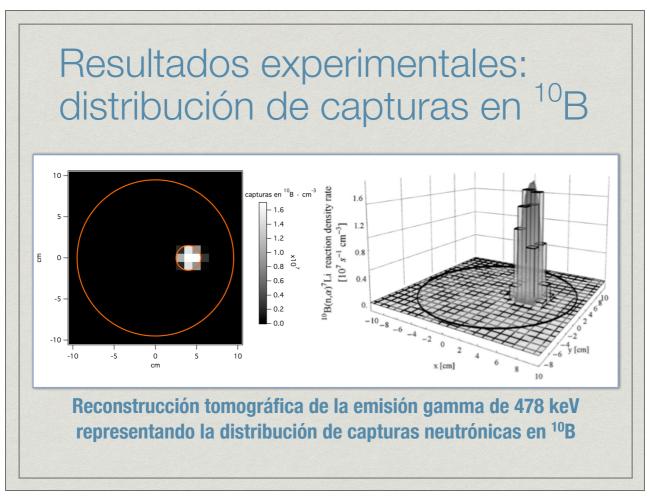
#### Año 2008


Prototipo ensayado en el acelerador para estudios de BNCT de la Universidad de Birmingham (Reino Unido)

Prototipo construido con detectores de centelleo de última generación de LaBr<sub>3</sub>(Ce)

(Ensayos previos (2007) en RA6, Argentina, con CdZnTe)





11











# DESARROLLOS EN CURSO Y CONCLUSIONES

17

# Nuevos detectores

- Cambio de geometría de los cristales centelladores:
  - · Incremento del espesor para incrementar la eficiencia intrínseca de detección.
  - Disminución del tamaño lateral para mejorar la relación señal/ruido y disminuir el volumen de blindaje.
- Remplazo de tubos fotomultiplicadores por opto semiconductores compactos.

# Conclusiones

- \* Se construyó y ensayó un prototipo de un sistema destinado a la determinación en tiempo real de la dosis que recibiría un paciente en BNCT
  - Principio basado en la metodología SPECT (single-photon computed tomography)
  - \* Detectores de alta resolución energética
- \* Se obtuvo por primera vez un corte tomográfico de la distribución de capturas en <sup>10</sup>B en una instalación dedicada a estudios de BNCT
- Se está trabajando en la optimización del sistema empleando detectores diseñados ad hoc

19

Contacto:

Alejandro Valda

avalda@unsam.edu.ar