

ESCUELA DE CIENCIA Y TECNOLOGÍA

Tecnología y Aplicaciones de Aceleradore

Introducción a la detección gamma y a la dosimetría en tiempo real basada en imágenes en BNCT

1

Alejandro Valda avalda@unsam.edu.ar

Buenos Aires, 3 al 5 de mayo de 2018

Plan

- ·⊱ Introducción: detección gamma y BNCT
- Principios de la detección gamma
- · > Dosimetría en tiempo real basada en imágenes
 - * Planteo del problema
 - 🕞 Tomografía por emisión de fotones
 - ⊱ Experiencia en Argentina

Rayo gamma característico de la captura en 10B $u = 10 \mu m$ $E\gamma = 478 \text{ keV}$ $u = 10 \mu m$ $E\gamma = 478 \text{ keV}$ $u = 10 \mu m$ La tasa de producción
depende del flujo neutrónico y
del número de núcleos de 10B.La detección de este rayo gamma es la base de la técnica
analítica PGNAA (prompt gamma neutron activation
analysis) y del desarrollo de técnicas dosimétricas en
tiempo real (online) en BNCT.

- Z: número atómico del material del medio
- E₀: energía de los fotones incidentes

RESULTADO: GENERACIÓN DE ELECTRONES RÁPIDOS

Familias de detectores

Los detectores de radiación ionizante suelen categorizarse según tres grandes grupos, dependiendo del resultado de la interacción de la radiación:

- Detectores gaseosos: generación de cargas eléctricas (ej. pares electrón-ion) en un medio gaseoso.
- Detectores de centelleo: generación de luz causada por la interacción de la radiación en determinados materiales.
- Detectores semiconductores: generación de pares electrón-hueco en la estructura electrónica del medio.

Esta clasificación no es exhaustiva, no incluye a las emulsiones fotográficas, detectores autoenergizados, detectores de trazas, ...

Familias de detectores

Los detectores de radiación ionizante suelen categorizarse según tres grandes grupos, dependiendo del resultado de la interacción de la radiación:

- Detectores gaseosos: generación de cargas eléctricas (ej. pares electrón-ion) en un medio gaseoso.
- Detectores de centelleo: generación de luz causada por la interacción de la radiación en determinados materiales.
- Detectores semiconductores: generación de pares electrón-hueco en la estructura electrónica del medio.

Esta clasificación no es exhaustiva, no incluye a las emulsiones fotográficas, detectores autoenergizados, detectores de trazas, ...

Detector semiconductor

Principio de detección

El frenado de los electrones rápidos producidos por las partículas ionizantes genera pares electrónhueco. Éstos se hacen migrar mediante la acción de un campo eléctrico aplicado.

Análogo a lo que ocurre en detectores gaseosos pero con densidad varios miles de veces superior.

$N_{\text{pares electrón-hueco}} \propto \text{energía depositada}$

Existen detectores basados en semiconductores intrínsecos (ej. Ge, Si) y dopados con donores (tipo n) o aceptores (tipo p) de electrones .

Espectroscopía de fotones y de partículas cargadas. Dosimetría.

Dosimetría en tiempo real basada en imágenes:

Planteo del problema

Primeros trabajos

- WFAR Verbakel et al., Int. J Radiation Oncology Biol Phys, 55, 743 (2003)
- * T Kobayashi, T., Y Sakurai, M Ishikawa, Med Phys, 27, 2124 (2000)

29

Trabajos sobre el tema presentados al 17th International Congress on Neutron Capture Therapy 2 al 7 de octubre de 2016, Missouri, USA

- Characterization of a CdZnTe detector prototype for Boron imaging by SPECT: simulations and measurements in a neutron field; S Fatemi, L Bianchini, S Bortolussi, I Postuma, N Protti, A De Bari, G Benassi, N Zambelli, M Bettelli, A Zappettini, S Altieri; Italia
- Towards ¹⁰B neutron capture reaction mapping in a patient with photon-counting SPECT systems; A Winkler, H Koivunoro, I Auterinen, S Savolainen; Finlandia
- Development of a real-time prompt gamma-ray imaging system using GAGG:Ce or Srl2:Eu scintillator array for BNCT; H Tanaka, Y Sakurai, T Takata, T Watanabe, M Suzuki, K Akabori, S Kawabata, S Masunaga, N Kondo, K Ono, A Maruhashi, Japón
- Design and Feasibility of a Gamma-Ray Detection System for Three Dimensional Patient Dose Imaging; K Akabori, K Taki, Y Aoki, T Mitsumoto, S Yajima, H Tanaka; Japón
- SD SPECT reconstructed image from prompt gamma ray in BNCT for a heterogeneous human phantom: A Monte Carlo simulation study; C Gong, X Tang, C Geng, H Yu, W Shao, D Shu, D Chen; China
- Gadolinium effect estimation of GAGG for BNCT-SPECT; N Saraue, M Manabe, R Ohya, F Sato, I Murata; Japón

Tomografía

Tomografía: del griego tomos (τ**ό**μος), que significa corte o sección

Algunos ejemplos en medicina

Técnica de visualización 3D de una imagen de resonancia magnética

Corte tomográfico en una imagen dual: resonancia magnética y medicina nuclear

SPECT

<text><text><text><text>

35

Reconstrucción tomográfica

La adquisición de un número apropiado de:

- · caminos de integración y
- · ángulos de proyección

permite, mediante la aplicación de algoritmos matemáticos*, encontrar la distribución espacial de las fuentes de señal. En nuestro caso esto corresponde a la distribución de fuentes emisoras de radiación gamma. Este proceso se conoce como reconstrucción tomográfica.

* Por ejemplo, retroproyección filtrada o algoritmos iterativos.

Diseño del sistema: características generales

- Resolución espacial del colimador: 1 cm
- Adquisición:
 - muestreo angular:
 9° (20 posiciones entre 0° y 180°)
 - muestreo lineal: 37
- Imagen:
 - tamaño de la imagen: 21×21 pixeles
 - tamaño del píxel:
 - 1 cm × 1 cm
- Cálculo: simulaciones numéricas Monte Carlo (código MCNP)

Trabajos experimentales

Año 2007

Prototipo ensayado en el reactor RA6 (Argentina) Prototipo construido con detectores semiconductores discretos de CdZnTe.

Año 2008

Prototipo ensayado en el acelerador para estudios de BNCT de la Universidad de Birmingham (Reino Unido). Colaboración CNEA - UNSAM - Univ. de Birmingham

41

Prototipo construido con detectores de centelleo discretos de LaBr₃(Ce).

DM Minsky et al., First tomographic image of neutron capture rate in a BNCT facility; Applied Radiation and Isotopes, 69, 1858–1861 (2011)

