Boron Concentration measurements in tissues by charged particles spectrometry

Saverio Altieri

Department of Physiscs University of pavia, italy Infn section of pavia, italy

The samples

Biopsies taken from treated animals or from patients are divided into smaller samples of about 1 cm3 and frozen in liquid nitrogen. Then, 70- μ m-thick sections are produced with a Leica cryostat at a temperature of -20 C and deposited on 100- μ m-thick Mylar disks

Sequential slices are cut in this order:

- 70 µm for spectrometry -> mylar disks
- 10 µm for histology
- •70 µm for autoradiography -> sensitive film

neutron irradiation				
Reaction	Thermal microscopic cross section (barn)	Q-value (keV)	Isotopic abundance (%)	Elemental p weight of lu
$^{14}N(n,p)^{14}C$	1.8	630	99.634	3.1
$^{17}O(n,\alpha)^{14}C$	0.24	1,800	0.038	74.9
${}^{32}S(n,p){}^{33}P$	0.002	530	95.02	0.3
32 S(n, α) ²⁹ Si	0.007	1,500	95.02	0.3
${}^{33}S(n,\alpha){}^{30}Si$	0.2	3,500	0.75	0.3
${}^{35}\mathrm{Cl}(n,p){}^{35}\mathrm{S}$	0.4	620	75.77	0.3
${}^{40}\mathrm{K}(n,p){}^{40}\mathrm{Ar}$	4.0	930	0.012	0.2
${}^{10}\mathbf{B}(n,\alpha)^{7}\mathrm{Li}$	3,837	2,790	19.9	<0.5 ppm

Principal reactions with positive Q-values that contribute to

charged particle emission in biological tissue, during thermal

Boron standard Boron implanted in Silicon

For every measurement, the following spectra are collected:

- Calibration sample: a superficial boron implantation on silicon
- Background: a mylar disk without tissue
- 10 tissue samples

The calibration sample made up of a ¹⁰B implantation in Si is used to calibrate the experimental spectra in energy.

α contribution to the spectrathehighlightedzonerepresents the particles thatarrived at the detector withRESIDUALENERGYBETWEEN 1100 and 1350keV.

Using the residual energy as a function of the distance covered in lung tissue, the Δx from which the K particles came, can be calculated.

 $\operatorname{conc}_{\mathrm{F}} = \frac{K_{\mathrm{d}}}{\eta \cdot \sigma \cdot \phi \cdot S_{\mathrm{d}}} \cdot \frac{\Delta E_{\mathrm{d}}}{\Delta (\rho_{\mathrm{d}} x_{\mathrm{d}})} \cdot \frac{A_{\mathrm{W}}}{N_{\mathrm{A}}} \cdot \frac{m_{\mathrm{td}}}{m_{\mathrm{tf}}}$

Where:

K is the number of events in the interval ΔE ;

 $\Delta E/\Delta(\rho x)$ is the α stopping power in dry tissue;

 η is the efficiency of the detection system;

 σ is the cross section of the thermal n reaction on ¹⁰B;

- ϕ is the thermal neutron flux;
- **S** is the surface of the sample seen by the detector;
- A_{w} is the atomic weight of ¹⁰B;
- N_A is the Avogadro number.

0.23 measured

 $\operatorname{conc}_{\mathrm{F}} = \frac{K_{\mathrm{d}}}{\eta \cdot \sigma \cdot \phi \cdot S_{\mathrm{d}}} \cdot \frac{\Delta E_{\mathrm{d}}}{\Delta(\rho_{\mathrm{d}} x_{\mathrm{d}})} \cdot \frac{1}{\Delta(\rho_{\mathrm{d}} x_{\mathrm{d}})}$ A_{W} $m_{\rm td}$ $m_{\rm tf}$

Where:

K is the number of events in the interval ΔE ; $\Delta E/\Delta(\rho x)$ is the α stopping power in dry tissue; η is the efficiency of the detection system; σ is the cross section of the thermal n reaction on ¹⁰B; ϕ is the thermal neutron flux; S is the surface of the sample seen by the detector; A_w is the atomic weight of ¹⁰B; N_A is the Avogadro number.

measured in the actual tissue

The residual energy as a function of the tissue thickness was obtained by experimental measurements using a ²⁴¹Am source and by MC methods using SRIM. The boron concentration obtained with these two curves differ by 5%.

$$\operatorname{conc}_{\mathrm{F}} = \frac{K_{\mathrm{d}}}{\eta \cdot \sigma \cdot \phi \cdot S_{\mathrm{d}}} \cdot \frac{\Delta E_{\mathrm{d}}}{\Delta (\rho_{\mathrm{d}} x_{\mathrm{d}})} \cdot \frac{A_{\mathrm{W}}}{N_{\mathrm{A}}} \cdot \frac{m_{\mathrm{td}}}{m_{\mathrm{tf}}}$$

$$conc_{\rm F} = \frac{K_{\rm d}}{\eta \cdot \sigma \cdot \phi \cdot S_{\rm d}} \cdot \frac{\Delta E_{\rm d}}{\Delta (\rho_{\rm d} x_{\rm d})} \cdot \frac{A_{\rm W}}{N_{\rm A}} \cdot \frac{m_{\rm td}}{m_{\rm tf}}$$

Thank you