

Facilidad de medición gamma instantáneo para BNCT

Matías J. Valero

Coordinación BNCT, GAATeN, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica

Departamento de Física y Química. Facultad de Ingeniería y Ciencias Exactas y Naturales. Universidad Favaloro

10° Edición de las Jornadas del CUIA en Argentina

Curso Intensivo de Terapia por Captura Neutrónica en Boro Aspectos interdisciplinarios para la concreción de una radioterapia selectiva

Sábado 5 de Mayo de 2018

Análisis de Gamma Instántaneo por Activación Neutrónica (Prompt-Gamma Neutron Activation Analysis, PGNAA)

B-particle

 $\mathcal{X}_{Z\pm 1}^{\mathcal{A}+1} X^*$ gamma $\mathcal{X}_{Z\pm 1}^{\mathcal{A}+1} X$

Es una técnica macroscópica radioanalítica capaz de detectar cualquier elemento de la tabla periódica, excepto ⁴He, prácticamente en tiempo real.

Análisis de Gamma Instántaneo por Activación Neutrónica (Prompt-Gamma Neutron Activation Analysis, PGNAA)

PGNAA para BNCT

CUIA

Permite realizar mediciones cuantitativas de ¹⁰B prácticamente en tiempo real, en distintos tipos de muestras. ${}^{11}B'$

Análisis de Gamma Instántaneo por Activación Neutrónica

Propiedades analíticas

- Cuantificación macroscópica.
- Prácticamente en tiempo real.
- Radiaciones involucradas con alta penetración.
- El método no es necesariamente destructivo.
- No es necesario pre-procesar las muestras.
- Puede analizar muestras sólidas, líquidas y gaseosas.

Rol de cuantificación de ¹⁰B en BNCT

Aplicaciones

Curva de biodistribución en sangre

- Herramienta importante para ajuste de planificación de tratamiento.
- Control de calidad de compuestos borados.
- Estudios de captación de boro.

Cantidades fundamentales

En caso simplificado, con haz monoenergético, uniforme y plano, y una muestra homogénea de espesor delgado:

$$\rho_{\gamma 0} = \frac{m}{M} \cdot N_A \cdot \sigma_{\gamma 0} \cdot \Phi_0 \cdot \varepsilon(E_{\gamma})$$

 $\mu(\overset{\mu}{r})$: densidad de masa en función de la posición en la muestra. M: masa atómica relativa del elemento. N_A : número de Avogadro. $\sigma_{\gamma}(E_n,\overset{\mu}{r})$: producción parcial de radiación gamma a una E_n . E_n : energía de neutrón dada. $\Phi'(E_n,\overset{\mu}{r})$: flujo neutrónico. $\varepsilon'(E_{\gamma},\overset{\mu}{r})$: eficiencia. E_{γ} : energía gamma.

Se puede realizar una **curva de calibración** para una facilidad PGNAA dada, que relacione la tasa neta de cuentas de rayos gamma de 478 keV provenientes de una muestra con ¹⁰B, con la concentración de tal nucleido en ppm de la muestra de análisis.

CUIA

05/05/2018

Cantidades fundamentales

Sensibilidad ((cuentas/s)/mg)

Límite de detección (µg)

$$L_D = 3.29 \cdot \frac{\sqrt{R_b/t}}{S}$$

M: masa atómica relativa del elemento. *N*_A: número de Avogadro.

 $\sigma_{\gamma 0}$: sección eficaz de producción parcial de radiación gamma. Φ_0 : flujo neutrónico. $\varepsilon(E)$: eficiencia de cuentas.

N_G: cuentas totales debajo del pico.
N_B: cuentas de fondo debajo del pico.
t: tiempo de cuentas.
m: masa del elemento específico.

R_B: tasa cuentas de fondo debajo del fotopico. *t*: tiempo de cuentas. *S*: sensibilidad.

05/05/2018

1200

Fuentes de neutrones para PGNAA

Reactor nuclear

Fuente compacta de neutrones

Extracción y adecuación del haz

Formas de extracción y adecuación del haz

Colimadores y filtros

Formas de extracción del haz

Cristales multicapa para difracción de Bragg

Guía curva de neutrones

a

'hot'

_'cold

'cold'

О.

Interacciones principales que ocurren en una facilidad PGNAA

• Reacción de captura radiativa nuclear o (n, γ)

- Muestra.

- Todos los materiales de la facilidad que tengan sección eficaz de captura neutrónica.

Reacción de captura con la emisión de partículas cargadas Los casos mas relevantes son:

- ⁶Li(*n*,*t*)⁴He (940 b). (Ej: colimadores con material absorbente de neutrones)
- ¹⁴N(n,p)¹⁴C (1.83 b) sin emisión gamma. (Ej: muestra)
- Captura de neutrones en el rango epitérmico de energía
- Procesos de dispersión elástica e inelástica para neutrones epitérmicos y rápidos

Desarrollo de la facilidad PGNAA en el reactor RA-3

- Reactor nuclear de tipo tanque abierto.
- Uranio enriquecido al 20%.
- Licenciado para 10 MW. Opera actualmente a 9 MW.

- Producción de radioisótopos a escala comercial.
- Experimentación en temas de investigación básica.
- Aplicaciones tecnológicas.

05/05/2018

Desarrollo de la facilidad PGNAA en el RA-3

Provisto por Sebastián Langan, Reactor Nuclear RA-3, CAE, CNEA, comunicación privada.

Muestras y requisitos de la técnica para BNCT

Definen

Características de muestras a medir

Tipo de muestras Tejido tumoral y/o sano: biopsias de pulmón, hígado, piel, hueso, sangre, etc.

Muestra sólida o mixta Masa > 0.05 g

> **Muestra líquida** Volumen > 10 µl

Concentración de ¹⁰B

~ 10 partes por millón

Requisitos de diseño de la facilidad PGNAA

Requerimientos del haz de neutrones en la posición de la muestra

Alto flujo neutrónico térmico (ϕ_T) Mínimo deseable es de $\phi_T = 6.0 \cdot 10^7$ n/(cm² · s) » Tiempo de medición corto. Sensibilidad (11 cps/µg).

Bajas componentes del flujo neutrónico de mayores energías - Relación $\phi_{\rm E} / \phi_{\rm T} < 1\%$ - Relación $\phi_{\rm R} / \phi_{\rm T} < 1\%$ $\phi_{\rm E}$: flujo neutrónico epitérmico $\phi_{\rm R}$: flujo neutrónico rápido » Evitar picos gamma no deseados. Radioprotección. Nivel de detección. Daños por radiación. Límite de detección (0.1 µg)

CUIA

Diseño actual del sistema de adecuación del haz y región de detección la facilidad en el RA-3

Etapa de diseño de adecuación del haz

Diseño actual del sistema de adecuación del haz y región de detección la facilidad en el RA-3

Etapa de diseño de adecuación de región de detección

Diseño actual del sistema de adecuación del haz y región de detección la facilidad en el RA-3

Etapa de diseño de adecuación de región de detección (modificaciones a evaluar experimentalmente)

- LD de boro (simulación): ~1.2 µg.
- LD de boro en muestra de sangre (simulación)
 - ~ 3 ppm en 1.0 ml
 - ~ 15 ppm en 100 µl

Muchas gracias por la atención!!

mvalero@cae.cnea.gov.ar

05/05/2018

Referencias

^[1] Riley, K. J. Improved Boron 10 Quantification via PGNAA and ICP-AES. (M.Sc. Thesis), University of Michigan, United States of America, 1993.

^[2] G.Molnar et al. The new prompt-gamma neutron activation analisys facility at Budapest, J of Radioanalytical and Nuclear Chemistry Vol.215, 111-115 (1997).

^[3] Kiyanagi Y.. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan. Journal of Imaging, 4(4), 55, 2018.

^[3] Sztejnberg M.L, Gadan M. A., Bortolussi S., Pinto J., Ojeda J., Langan S., ... y Miller M. E. Development of prompt gamma neutron activation analysis facility for ¹⁰B measurements at RA-3: Design stage. Appl. Radiat. Isotopes, 69, 1928-1931, 2011.

^[4] Bortolussi, S., Pinto, J.M., Thorp, S.I., Farias, R.O., Soto, M.S., Sztejnberg, M., Pozzi, and Miller, M., 2010. Simulation of the neutron flux in the irradiation facility at RA-3 reactor. In Proceedings of the 14th International Congress on Neutron Capture Therapy, Buenos Aires, pp. 383 – 386, October 2010.

^[5] Rogulich L., Valero M., Sztejnberg M, Thorp S. I., Estryk G., Riella, y Quintana J. Caracterización preliminar del canal 4 en el reactor RA-3 para usar en un sistema Prompt Gamma. XLI Reunión Anual de la Asociación Argentina de Tecnología Nuclear, Ciudad Autónoma de Buenos Aires, 2014.

^[6] Miller M. E., Mariani L. E., Sztejnberg Gonçalves-Carralves M. L., Skumanic M., Thorp S. I. Implantable self-powered detector for on-line determination of neutron flux in patients during NCT treatment. Applied Radiation and Isotopes 61; 1033–1037, 2004.

^[7] Valero, M., Rogulich, L., Thorp, S., Miller, M., Sztejnberg, M. Simulation approach for the adequation of the detection region in the PGNAA facility design at RA-3. IX Young Researchers BNCT Meeting, Kyoto, Japan, 2017.

CUIA