

JORNADAS DEL CUIA EN ARGENTINA 10a. Edición

Pavia accelerator Project

Saverio Altieri

Department of Physiscs University of pavia, italy Infn section of pavia, italy

Neutron sources for BNCT

Nuclear Reactors

until now Not the best environment for the patient Usually far from the hospital BNCT not the main activity of the reactor Change reactor channel to create a

BNCT beam

Neutron sources for BNCT

Nuclear Reactors

Finally proton accelerators

From reactor to ABNCT

MUNES

MUltidisciplinar NEutron Source

National Institute for Nuclear Phisycs (INFN)

> Legnaro National Laboratory (LNL) and Section of Pavia

The RadioFrequency Quadrupole RFQ

Protons are accelerated by a radiofrequency quadrupole

Layout of the 7.13 m long accelerating structure on the support system,

the main cooling pipes connections,

quadrupole cross section

and view of the first module constructed

The RadioFrequency Quadrupole RFQ

Protons are accelerated by a radiofrequency quadrupole

Accelerator type: RFQ Proton energy: 5 MeV Proton current: up to 50 mA Beam power: 150 kW Time structure: up to CW Neutron converter: Be Operative power density on Be target: 700 Watt/cm² Neutron source intensity: 10¹⁴ s⁻¹

The accelerator is made of 3 segments

- 3 electromagnetic segments 2.4 meters long
- 2 resonant coupling cells + dipole stabilizers
 each segment consists of two 1.2 meters long modules (basic construction units)

The accelerator is made of 3 segments

3 electromagnetic segments 2.4 meters long
2 resonant coupling cells + dipole stabilizers
each segment consists of two 1.2 meters long modules (basic construction units)

The RadioFrequency Quadrupole RFQ

Two waveguides transport the radio frequency into the cavity through two couplers

The power supplies

No klystron but 8 independent solid state 125 kW amplifiers

Advantages with respect to a klystron:

- Lower operating costs (cost and duration of components)
- Availability e reliability (no stop operation in case of components failure)
- Absence of high voltages (important for the operation in an hospital)

Berillium target

Be has high melting point 1278 °C and high heat conductivity, but gas permeability is extremely low (9 order lower than average materials). H bubbles can be trapped in bulk beryllium and cause fractures.

⁹Be(p,n)⁹B neutron yield (MeV⁻¹ Sr⁻¹ μC⁻¹) 00 01 μC⁻¹ 01 μC⁻¹ *t++**+ MCNP6 MCNPX PHITS EXP 1.5 2.0 Energy (MeV) 0.0 0.5 1.0 2.5 3.0 3.5

BSA study

BSA study

Figure 2.2: Distribution of neutron yield measured at different emission angles [14].

Agosteo et al. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a Be target

Applied Radiation and Isotopes, (2011).

⁹Be(p,n)⁹B

Tailoring of a neutron beam around 1 keV

Validation of the beam with a TPS

Limb Osteosarcoma The prescription of 22 GyEq to skin, leads to a tumour dose of 99.3 – 129 Gy_Eq with a good uniformity in all the tumour volume

Design and construction of a prototype of syntherization machine @INFN workshop in collabration with Chemistry Department of Pavia

Solid AIF₃

50x50x10 mm density 82%

Neutron activation

Nuclide	Half-Life	Present in samples			
Al-28	2.414 min	raw	pure		Al std
As-76	1.0778 d	raw			
Au-198	2.69517 d				Al std
Cl-38	37.24 min		pure	Na std	
Co-60	5.2714 y	raw			
Ga-72	14.10 h	raw			
Mg-27	9.458 min	raw	pure		Al std
Mn-56	2.5785 h				Al std
Na-24	14.9590 h	raw	pure	Na std	Al std
Sb-124	60.20 d		pure		

Table 2.3: Nuclides found in samples irradiated with rabbit

Nuclide	Half-Life	Present in samples	
As-76	1.0778 d	raw	
Br-82	35.30 h	raw	pure
Co-60	5.2714 y	raw	pure
Cr-51	27.7025 d		pure
Fe-59	44.503 d	raw	
Ga-72	14.10 h	raw	pure
La-140	1.6781 d		pure
Na-24	14.9590 h	raw	pure
Sb-122	2.7238 d	raw	pure
Sb-124	60.20 d	raw	pure
Sc-46	83.79 d	raw	pure
Se-75	119.779 d		pure
Zn-65	244.26 d	raw	

Table 2.6: Nuclides found in samples irradiated in CT

Characterization of

 AIF_3

Figure 2.6: Experimental set-up for dose measurements effectuated

BNCT treatment room

Absorbed dose MESH in the room air with walls of ordinary concrete due to thermal neutrons

Dose to patient

	Dose in 2h [mGy]		
	ordinary concrete	concrete+boron	
brain	773±7	573±5	
bladder	415 ± 11	329 ± 7	
stomach	419 ± 7	363 ± 5	
kidneys	526 ± 7	450 ± 6	
intestine	624 ± 7	548 ± 5	
lungs	501 ± 4	490±3	
liver	122 ± 11	115 ± 7	

Table 4.3: Doses absorbed by the principal organs in 2h of irradiation

Patient activation

Nuclide	Half-life [s]	R [s^{-1} g ⁻¹]	a [Bq/g]
Cl-38	37.24 min	34.98 ± 0.07	23.53 ± 0.04
K-42	12.360 h	30.80 ± 0.06	1.680 ± 0.003
Fe-59	44.503 d	0.4180 ± 0.0011	0.0002712 ± 0.000007

Table 5.3: Simulated reaction rates and specific activity after 2h of irradiation for soft tissue elements, with the walls of ordinary concrete

Where we can install the BNCT accelerator?

National Hadron Therapy Center in Pavia

(CNAO)

The National Centre for Oncological Hadrontherapy (CNAO)

Particles	p, He, C, O
Accelerator Type	Synchrotron
Ion Sources	2 ECRIS (Supernanogan, Pantechnik)
Injector	7 MeV/u linac injector
Particle Energy (MeV/u)	p: 60 - 250 MeV
	C: 120 - 400 MeV/u
Beam Intensity, particles per spill (pps)	p: 10 ¹⁰
	C: 4 10 ⁸
Repetition Rate	0.4 Hz for 1s spill
Spill Length (msec)	250 - 10,000
Beam Range (mm)	p: 30 - 370
	C: 35 - 275
Beam Spot Size (mm FWHM)	4 - 10
Treatment Rooms	2 H; 1 H+V
Beam Delivery Technique	raster scan

The INFN BNCT accelerator

The INFN BNCT accelerator

View of the site

The INFN BNCT accelerator

View of the site

Italian collaboration

University of PAVIA

Department of Physics Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Department of Chemistry, University of Pavia Department of Molecular Medicine, University of Pavia IRCCS S. Matteo Foundation, Pavia *CNAO, Pavia INFN, Pavia INFN, Pavia*

University of TORINO

- University of NOVARA
- University of Palermo
- IMEM-CNR Parma
- Due2lab s.r.l. Parma
- INAF-OAS, Bologna

International collaborations

- CNEA, Argentina: very active researchers exchange for computational dosimetry, treatment planning, beam design, B concentration measurement methods inter-comparison, BNCT efficacy and toxicity on animal models,
- □ INL, Idaho, USA: neutron spectrometry in irradiation facilities
- HUCH, Helsinki University Central Hospital and FIR 1, Finland
- 🛛 QEH, University Hospital, Birmingham
- Okayama University (Y. Ichikawa)
- Nagoya University (Tsuchida)
- China Funded project in the frame of the Executive Programme of Scientific and Technological Cooperation between Italy and China for the years 2016-2018. Italian Ministry of Foreign Affairs and International Cooperation (MAECI). Project: NEU_BEAT (Neutron Beams for Cancer Treatment). Collaboration on:
- -New materials for neutron beams design
- -Treatment Planning calculations
- -Computational dosimetry
- -Integration of BNCT and heavy ion therapy

Silva Bortolussi Nicoletta Protti Ian Postuma Setareh Fatemi Chiara Magni Francesca Ballarini Mario Carante Cinzia Ferrari Laura Cansolino Saverio Altieri

Thank you

saverio.altieri@unipv.it

http://www.bnct.it

Thank you